
Sub-Second Lookups on a Large-Scale
Kademlia-Based Overlay

Raul Jimenez, Flutra Osmani and Björn Knutsson
KTH Royal Institute of Technology

School of Information and Communication Technology
Telecommunication Systems Laboratory (TSLab)

{rauljc, flutrao, bkn}@kth.se

Abstract—Previous studies of large-scale (multimillion node)
Kademlia-based DHTs have shown poor performance, measured
in seconds; in contrast to the far more optimistic results from
theoretical analysis, simulations and testbeds.

In this paper, we unexpectedly find that in the Mainline
BitTorrent DHT (MDHT), probably the largest DHT overlay on
the Internet, many lookups already yield results in less than a
second, albeit not consistently. With our backwards-compatible
modifications, we show that not only can we reduce median
latencies to between 100 and 200 ms, but also consistently achieve
sub-second lookups.

These results suggest that it is possible to deploy latency-
sensitive applications on top of large-scale DHT overlays on the
Internet, contrary to what some might have concluded based on
previous results reported in the literature.

I. INTRODUCTION

Over the years, distributed hash tables (DHTs) have been
extensively studied, but it is only in the last few years that
multimillion node DHT overlays have been deployed on the
Internet. To our knowledge, only three DHT overlays (all of
them based on Kademlia [1]) consist of more than one million
nodes: Mainline DHT (MDHT), Azureus DHT (ADHT), and
KAD. The first two are independently used as trackers (peer
discovery mechanisms) by BitTorrent [2], while KAD is used
both for content search and peer discovery in eMule (a widely
used file-sharing application).

KAD has been thoroughly studied [3], [4], [5]. Stutzbach
and Rejaie [3] reduced median lookup latency to approxi-
mately 2 seconds (with a few lookups taking up to 70 seconds).
Steiner et al. [4] focused solely on lookup parameters, provid-
ing useful correlations between parameter values and lookup
latency. Their modest achieved lookup performance (lowest
median lookup latency at 1.5 seconds), authors discovered,
was not due to shortcomings in Kademlia or the KAD protocol
but due to limitations in eMule’s software architecture.

In this paper, we focus on Mainline DHT which, with up
to 9.5 million nodes1, is probably the largest DHT overlay
ever deployed on the Internet [6]. In 2007, a study of the then
most popular node implementation in MDHT reported median
lookup latencies around one minute [7] and, to our knowledge,
no systematic attempts to improve lookup performance have
been reported.

1A real-time estimation is available at
http://dsn.tm.uni-karlsruhe.de/english/2936.php (June 2011)

Lookup latency results for MDHT, KAD and ADHT [7],
[8] are disappointing considering the rather promising latency
figures —in the order of milliseconds— previously reported in
studies using simulators and testbeds [9], [10]. Our main goal
is to improve lookup performance in MDHT, thus closing the
gap between simulators and real-world deployments.

To measure and compare performance, we developed a
profiling toolkit able to measure different node properties
(lookup performance and cost among others) by parsing the
network traffic generated during our experiments. This toolkit
is capable of profiling any MDHT node, including closed-
source, without the need of its instrumentation.

We profiled the closed-source µTorrent (also called UTor-
rent) implementation, currently the most prevalent MDHT
implementation with 60% of the nodes in the overlay. Our
results show that UTorrent’s performance is unexpectedly
good, with median lookup latencies well under one second.

UTorrent’s performance does not, however, fulfill the de-
mands of latency-sensitive applications such as the system
that motivated this work (see Section II) because more than a
quarter of its lookups take over a second. Thus, in an attempt to
further reduce lookup latency, we developed our own MDHT
node implementations.

In this paper, we show that our best node implementations
achieve median lookup latencies below 200 ms and sub-second
latencies in almost every single lookup, meeting our system’s
latency requirements.

The rest of the paper is organized as follows. The back-
ground is presented in Section II. Section III introduces the
profiling toolkit. Section IV describes our MDHT node imple-
mentations while Section V discusses routing modifications.
Section VI presents the experimental setup, Sections VII
and VIII report the results obtained, Section IX briefly presents
related work, and Section X concludes.

II. BACKGROUND

The work presented in this paper is part of the P2P-Next
project2. This project’s main aim is to build a fully-distributed
content distribution system capable of streaming live and on-
demand video. Unlike file sharing applications, this is an
interactive application, and thus reducing perceived latency

2http://p2p-next.org/ (June 2011)



(e.g., the time it takes to start playback of a video after
the user selects it) to a level acceptable by users is of great
importance [11].

This system uses BitTorrent [2] as transport protocol and a
DHT-based mechanism to find BitTorrent peers in a swarm.
To avoid confusion, the following terms are defined here:
BitTorrent peers (or simply peers) are entities exchanging
data using the BitTorrent protocol; a swarm is a set of peers
participating in the distribution of a given piece of content;
and DHT nodes (or nodes for short) are entities participating
in the DHT overlay and whose main task is to keep a list of
peers for each swarm.

Our work is not, however, restricted to BitTorrent or video
delivery. One can imagine more demanding systems, for in-
stance, a DHT-based web service capable of returning services
(e.g. a web page) quickly and frequently. CoralCDN [12] is
a good example of such a service, although its scale is much
smaller.

Our hope is that our results will encourage researchers and
developers to deploy new large-scale DHT-based applications
on the Internet.

A. Kademlia

Kademlia [1] belongs to the class of prefix-matching DHTs,
which also includes other DHTs like Tapestry [13] and Pas-
try [14].

In Kademlia, each node and object are assigned a unique
identifier from the 160-bit key space, respectively known as
nodeID and objectID. Pairs of (objectID, value) are stored
on nodes whose nodeID are closest to the objectID, where
closeness is determined by performing an XOR bit-wise
operation. In BitTorrent, an objectID is a swarm identifier
(called infohash) and a value is a list of peers participating
in a swarm.

A lookup traverses a number of nodes in the DHT overlay,
each hop progressing closer to the target objectID. Each node
maintains a tree-based routing table, containing O(log n)
contacts (references to nodes in the overlay), such that the total
number of lookup hops does not exceed O(log n), where n
is the network size. The routing table is organized in buckets,
where each bucket contains up to k contacts sharing some
common prefix with the routing table’s owner. Each contact
in the bucket is represented by the triple (nodeID, IP address,
port).

New nodes are discovered opportunistically and inserted
into appropriate buckets as a side effect of incoming queries
and outgoing messages. To prevent stale entries in the routing
table, Kademlia replaces stale contacts —nodes that have been
idle for longer than a predefined period of time and fail to reply
to active pings— with newly discovered nodes.

To locate nodes close to a given objectID, the node perform-
ing the lookup uses iterative lookup from start to finish. This
node queries nodes from its routing table whose identifiers
have shorter XOR distances to the objectID, and waits for
responses. The newly discovered nodes —included in the
responses— are then queried during the next lookup step.

Kademlia makes use of parallel routing to send several parallel
lookup requests, in order to decrease latency and the impact
of timeouts. Lookup terminates when the closest nodes to the
target are located.

B. Improving Lookup Performance

Given Kademlia’s iterative lookup, lookup performance can
be greatly enhanced by modifying the initiating node alone,
without the need of changing any other node in the overlay.
Thus, modified nodes can be deployed at any moment, setting
the path for experimentation and incremental deployment of
“better”, yet backward-compatible, node implementations.

Researchers have proposed various approaches to increase
overall lookup performance in iterative DHTs, while keeping
costs relatively low. Parallel lookups and multiple replicas
are two parameters that have often been fine-tuned to reduce
the probability of lookup failures and alleviate the problem
of stale contacts in routing tables, which in turn, increase
DHT performance. Various bucket sizes, various-length prefix
matching (known as symbol size) and reduced —usually RTT-
based— timeout values have also been investigated as means
of improving the overall performance.

We discuss some of these improvements in detail in Sec-
tion IV and V, where we present the modifications we have
deployed and measured.

III. PROFILING MDHT NODES

In a DHT overlay, nodes are independent entities that collab-
orate with each other in order to build a distributed service.
A DHT protocol defines the interaction between nodes, but
provides significant latitude in how to implement it. Indeed, the
Mainline DHT protocol specification [15] leaves many blanks
for the implementer to fill in as best as he can.

It follows naturally that many different node implemen-
tations will coexist in the MDHT overlay. Some, developed
by commercial entities (e.g., Mainline and UTorrent), others
cooperatively as open source projects (e.g., Transmission and
KTorrent). Even though they have been developed to coexist,
significant differences in their behavior can be observed, parts
just accidents of separate development, others the result of
making different trade-offs.

From our initial studies of Mainline DHT, we had observed
diversity in the existing MDHT node implementations. We
also recognized that our efforts to improve the performance of
MDHT nodes would likely make use of the latitude afforded
by the protocol specifications, and thus it was of critical impor-
tance that we be able to study the impact of our modifications.
To this end, we built a toolkit for profiling and analyzing the
behavior and performance of MDHT nodes.

A. Profiling Tools

Instrumenting an open source DHT node is a common
approach to measure its performance. The instrumented node
would join an overlay, perform lookups, and log performance
measurements.

It is, however, unpractical to instrument nodes whose source
code is unavailable. In MDHT, UTorrent is by far the most



A B C D E* G*

C, D

E, C

F, G, *

NuT F*

F, G, *

F, G
, *

L
a
te

n
c
y

F, G

Fig. 1. Lookup performed by node under test (NuT). Letters A–G represent
nodes in the overlay. Values are represented with “*”.

popular node implementation (2.7 out of 4.4 million nodes
according to our results presented in Section VIII). Given
that UTorrent’s source code is closed, we devised a different
approach.

Our toolkit uses a black-box approach: an MDHT node is
commanded to perform lookup operations (by using the node’s
GUI or API), while simultaneously capturing its network
traffic. Figure 1 illustrates a lookup performed by the node
under test (NuT). This node joins the MDHT overlay and is
under our control (we can command it to perform lookups);
the rest of the nodes shown in the figure (A–G) are a minute
fraction of the millions of MDHT nodes —over which we
have no control.

Whenever NuT sends or receives a message, the data packet
is captured. When the experiment is over, all captured packets
can be parsed to measure lookup latency and cost, among other
properties.

The toolkit’s core, written in Python, provides modules to
read network captures and decode MDHT messages. Tools to
analyze and manipulate messages are also available, as are
the plotting modules that can produce various graphs. Along
with the rest of the software presented in this paper, we have
released the profiling toolkit under the GNU LGPL 2.1 license.

We use the toolkit in Sections VII and VIII to illustrate our
results, and as will be seen, it is already capable of measuring
and displaying many interesting properties of MDHT nodes.
New measurements and presentations are easily added as
plug-ins, using existing analysis and presentation plug-ins as
templates.

B. Profiling Metrics

In theoretical analysis and simulations of DHTs, lookup
performance is often measured in routing hops between the
initiator —node performing the lookup— and the node closest
to the target key. Although our profiling toolkit can measure
hops, we find it more appropriate to measure lookup latency
because that is the parameter determining whether a DHT is
suitable for latency-sensitive applications.

In this paper, we define lookup latency as the time elapsed
between the first lookup query is sent and the first response
containing values is received.

Figure 1 illustrates a full lookup performed by the node
under test. NuT starts the lookup by selecting the nodes closest
to the target in its routing table (A and B) and sending lookup
queries to them. NuT receives a response from A containing
nodes (C and D) closer to the target but no values. Then,
NuT sends queries to nodes C and D. The lookup continues
until NuT receives a response containing values (*) from E.
At this point we consider the goal achieved and we record the
lookup latency, although the lookup can progress further to
obtain more values associated with the key, as we will discuss
in Section VIII.

We define lookup cost as the number of lookup queries sent
before receiving a value (including queries sent but not yet
replied). In the example above, lookup cost is five queries. At
the time values are retrieved (E’s response contains values),
three queries were replied (A, B and E), D replies shortly
after, and C never replies (this query would eventually trigger
a timeout).

Finally, we define maintenance cost as the total number of
maintenance queries —ping and find_node messages—
sent by the node under test. These queries are sent to detect
stale entries in the routing table and find replacements for these
entries. As we later propose modifications to the routing table
management, which is the source of maintenance traffic, we
will also measure their impact on maintenance cost.

IV. IMPLEMENTING MDHT NODES

We have developed a flexible framework based on a plug-in
architecture, capable of creating different MDHT nodes. The
central part of the architecture handles the interaction between
network, API, and plug-ins; while the plug-ins contain the ac-
tual policy implementation. There are two categories of plug-in
modules: routing modules and lookup modules. The policies
are concentrated on these plug-ins (e.g., all algorithms and
parameters related to routing table management are exclusively
located in routing modules), simplifying their modification.
This architecture allows us to quickly implement different
routing table and lookup configurations, and compare them
against each other.

The combination of the core, a routing module and a
lookup module forms a fully-functional MDHT node, which
can be deployed and further analyzed with the profiling tools
described in Section III-A.

Although this paper examines only two lookup and four
routing modules, several additional modules have been de-



signed, implemented and measured. The modules presented
here have been chosen due to their characteristics and their
effects on lookup performance and cost.

Even though our plug-in architecture allows us to freely
modify lookup modules, we observe that merely adjust-
ing well-know lookup parameters can dramatically improve
lookup performance.

These lookup parameters are known as α and β. The α
parameter determines how many lookup queries are sent in
parallel at the beginning of the lookup, while β is the number
of maximum queries sent when a response is received. Figure 1
is an example of a lookup with both parameters set to two.

In this paper, we describe and measure two lookup modules:
• Standard Lookup Since the protocol specification does

not specify parameters such as α and timeout values,
we have resorted to an analysis of UTorrent’s lookup
behavior. According to our observations, UTorrent’s value
for α and β are four and one, respectively. Our standard
lookup implements the same parameters.

• Aggressive Lookup In our aggressive lookup module, β
is set to three while α remains four.

Our routing modules introduce much deeper modifications
to the original MDHT routing table management specified
in BEP5 (BitTorrent Enhancement Proposal 5) [15]. These
modifications are detailed in the next section.

V. ROUTING MODULES

Although some of the previous studies on Kademlia perfor-
mance have considered modifications on routing table manage-
ment, most of them estimate the performance gain assuming
that all nodes implement them.

We do not propose global modifications where all nodes
in the overlay must be modified to obtain benefits. Instead,
we propose modifications that benefit the nodes implement-
ing them, regardless of whether other nodes in the overlay
implement these modifications or not.

To our knowledge, this is the first attempt to deploy alterna-
tive routing table management implementations on an existing
multimillion overlay on the Internet, and then measure their
effects on lookup latency.

A. Standard Routing Table Management (BEP5)

The BEP5 routing module aims to implement the routing
table management specified in the BEP5 specifications [15]
as rigorously as possible. The specifications define bucket
size k to be 8. The routing table management mechanism is
summarized next.

When a message is received, query or response, the ap-
propriate bucket is updated. If there is already an entry
corresponding to this node in the bucket, the entry is updated.
Otherwise, three scenarios are possible: (1) if the bucket is full
of good nodes, the new node is simply discarded; (2) if there is
a bad node inside the bucket, the new node simply replaces it;
(3) if there are questionable nodes inside the bucket, they are
pinged; if any of them fail to respond after two ping attempts,
they will be replaced.

According to the specifications, nodes are defined as good
nodes if they respond to queries or they have been seen alive in
the last 15 minutes. Nodes which have not been seen alive in
the last 15 minutes become questionable. Nodes that failed to
respond to multiple consecutive queries (we chose this value
to be two) are defined as bad nodes.

Buckets are usually kept fresh as a side effect of lookup traf-
fic. Buckets which have not been opportunistically refreshed in
the last 15 minutes are refreshed by performing a maintenance
lookup. Maintenance lookups are similar to normal lookups
but they use find_node messages instead of get_peers.

B. Nice Routing Table Management (NICE)

The NICE routing module attempts to improve the quality
of the routing table by continuously refreshing nodes in the
routing table and checking their connectivity. While, as our
results show, this quality improvement directly reduces our
nodes’ lookup latency, we expect other nodes to be also
benefited as a side effect. We plan to measure this indirect
benefit in future work.

The refresh task is regularly triggered (every 6 seconds in
NICE). Each time it is triggered, it selects a bucket and pings
the most stale node in the bucket. This continuous refresh
guarantees that each bucket must have at least one contact
that was recently refreshed and no contacts that have not
been refreshed for more than 15 minutes. As a side benefit,
this makes maintenance traffic smooth and predictable, with a
maximum maintenance traffic of 10 queries per minute.

This module also actively probes nodes to detect and remove
nodes with connectivity issues from the routing table. In par-
ticular, we implement the quarantine mechanism we previously
proposed [16] where nodes are only added to the routing table
after a 3 minute period. This quarantine period is mainly aimed
at detecting DHT nodes with limited connectivity (probably
caused by nodes behind NAT and firewall devices) which cause
widespread connectivity artifacts in Mainline DHT, hindering
performance.

C. NICE + Low-RTT Bias (NRTT)

In Kademlia, any node falling within the region covered
by a bucket is eligible to be added to that bucket. Kademlia
follows a simple but powerful strategy of preferring nodes that
are already in the bucket over newly discovered candidates.
The reasoning is that this policy leads to more stable routing
tables [1].

Having stable contacts in the routing table benefits lookups
by reducing the probability of sending lookup queries to nodes
that are no longer available. Likewise, if the round trip time
(RTT) to these nodes is low, then the corresponding lookup
queries will be quickly responded, reducing lookup latency.

The impact of low-RTT bias in routing tables has been
previously discussed [17], [10] but never deployed on a large-
scale overlay.

The NRTT module is an implementation of the NICE mod-
ule plus low-RTT bias. While NICE follows Kademlia’s rules
regarding node replacement —i.e. nodes cannot be replaced



unless they fail to respond to queries— NRTT introduces
the possibility of replacing an existing node with a recently
discovered node, if the RTT of the incoming node is lower
than that of the existing node.

D. NRTT + 128-bucket (NR128)

Another approach to improve performance is to reduce the
number of lookup hops. The most extensive study of bucket
modifications in Kademlia [3] considered two options: (1)
adding more buckets to the routing table and (2) enlarging
existing buckets. Their theoretical analysis concluded that,
while both approaches offer comparable hop reduction on
average, increasing bucket size is simpler to implement, has
lower maintenance cost, and improves resistance to churn as
a side effect. Finally, they showed that performance improves
logarithmically with bucket size.

Enlarging buckets is simple but costly because maintenance
traffic grows linearly with bucket size. That is, if one is to
enlarge all buckets equally. But not all the buckets are equal
when it comes to lookup performance.

Given the structure of a Kademlia routing table, on average,
the first bucket is used in half of the lookups, the second
bucket in a quarter of the lookups, and so forth. In the NR128
routing module, buckets are enlarged proportionally to the
probability of them being used in a given lookup. The first
buckets hold 128, 64, 32, and 16 nodes respectively, while the
rest of the bucket sizes remain at 8 nodes. To our knowledge,
this technique has not been proposed before.

The expected result is that, while half of the lookups are
bootstrapped by a 128-bucket, and more than nine in ten by an
enlarged bucket, maintenance traffic merely doubles compared
to NICE (20 queries per minute).

VI. EXPERIMENTAL SETUP

To measure and understand the behavior of UTorrent and of
our own implementations, we have run numerous experiments
in a variety of configurations, both sequential and parallel. Our
final configuration is one in which we ran all implementations
in parallel, providing the same experimental conditions to all
nodes being compared, on a large number of freshly acquired
torrent infohashes (see below). The experiment we document
in this paper is neither the best nor the worst but rather
representative, as the results we obtained are very consistent
between different runs.

The experiment, which started on March 26, 2011 and
ran over 80 hours, tested all our eight (two times four)
implementations and UTorrent version 2.2 (build 23703)3. A
very simple coordination script is used to command our nodes
under test; a Python interface is used for our MDHT node
implementations and an HTTP interface is used for UTorrent.

Each node under test joins the multimillion-node MDHT
overlay. Upon joining the overlay, the lookup rounds begin.
In each round, a random NuT sequence is generated. Every
10 seconds, the next NuT in the sequence is commanded to

3Downloaded from http://www.utorrent.com/downloads/

10-3 10-2 10-1 100 101

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

RTT

RTT

Fig. 2. RTT to nodes in the MDHT overlay (Queries that have not been
replied within 2 seconds are considered timed-out, thus excluded from this
graph.)

perform a lookup on an identifier that is randomly selected
from its list of infohashes and then remove the infohash from
its list. All nine NuTs perform one lookup per round, until
every NuT has emptied its list of infohashes —i.e. when
every NuT has performed a lookup for every infohash. The
experiment is then considered complete and the captured traffic
is ready to be parsed by our profiling toolkit.

Experiments were not CPU-bound, and were run on a
system with a P4@3.0GHz, 3GB RAM and running Windows
7. Regarding network latency, as shown in Figure 2, the RTTs
from the nodes under test to other MDHT nodes were mainly
concentrated between 100 and 300 ms, with very few RTTs
over one second (2nd percentile: 2.13 ms, 25th percentile:
94.8 ms, median: 175.2 ms, 75th percentile: 343.6 ms, 98th

percentile: 1093.9 ms).

Infohashes can be obtained from various sources, and can
even be generated by us. We are, however, specifically inter-
ested in active swarms under “real world” conditions. This
has led us to obtain infohashes from one of the most popular
BitTorrent sites on the Internet, thepiratebay.org. This
site has a “top” page with the most popular content organized
in categories. We have extracted all infohashes from these
categories, obtaining a total of 3078 infohashes.

It should be noted that our MDHT node implementations
neither download, nor offer for upload, any content associated
with these infohashes. UTorrent is given only 3 seconds to
initiate the download —triggering a DHT lookup as a side-
effect— before being instructed to stop its download, thus
leaving no time for any data transfer. We have observed
that the DHT lookup progresses normally despite the stop
command.



10-3 10-2 10-1 100 101

Lookup latency (s)

0.0

0.2

0.4

0.6

0.8

1.0
Em

pi
ric

al
 C

D
F

NR128-A
NRTT-A
NICE-A
NR128-S
NRTT-S
NICE-S
UT
BEP5-A
BEP5-S

Fig. 3. Lookup latency when retrieving a value from the MDHT overlay

VII. EXPERIMENTAL RESULTS

Each of the eight node implementations we have studied
is one of the combinations of our four routing and two
lookup modules described previously, and the names we use
for them reflect the components combined. For instance, the
NICE-S node implementation uses the NICE routing module
plus the standard (S) lookup module. Similarly, we will use
“wildcards”. For example, *-S indicates all nodes using the
standard lookup module, and NICE-* all nodes using the NICE
routing module. UTorrent is simply referred to as UT.

A. Lookup Latency

Figure 3 shows the empirical cumulative distribution func-
tion (CDF) of lookup latency when retrieving a value from the
overlay, as defined in Section III-B.

In Table I we document lookup latencies for the 50 (me-
dian), 75, 98, and 99 percentiles. We expect these figures to
be valuable for those interested in large-scale latency-sensitive
systems, whose requirements usually specify a maximum
latency for a large fraction of the operations.

Since our BEP5 routing module follows the MDHT spec-
ifications published by the creators of UTorrent (BitTorrent,
Inc.) and our standard module implements the same lookup
parameters as UTorrent, we expected that BEP5-S would
perform similarly to UTorrent. As our measurements reveal,
this is not the case. UT performs significantly better than
our BEP5-S, and even outperforms our BEP5-A, which we
expected to beat UT by using more aggressive lookups.
This fact suggests undocumented enhancements in UTorrent’s
routing table management.

We see that the aggressive lookup module consistently
yielded lower median lookup latency, but more importantly,
drastically reduced the worst-case latencies, as seen in the 98th

and 99th percentile columns of Table I.
Nodes implementing the NICE routing module perform

better than BEP5 and also UTorrent. We believe that this is

TABLE I
LOOKUP LATENCY (IN MS)

Node median 75th p. 98th p. 99th p.
UT 647 1047 3736 5140
BEP5-S 1105 3011 6828 7540
NICE-S 510 877 4468 5488
NRTT-S 459 928 5060 5737
NR128-S 286 589 4375 5343
BEP5-A 825 2601 3840 4168
NICE-A 284 420 2619 3247
NRTT-A 185 291 512 566
NR128-A 164 269 506 566

due to an improvement in the quality of the initiator’s routing
table caused by our constant refresh strategy and mechanisms
to detect and avoid nodes with connectivity limitations.

The performance gain from the addition of low-RTT bias
(NICE vs. NRTT) is uneven. NRTT-A performs significantly
better than NICE-A, but using standard lookups, the difference
is less pronounced. This is due to standard lookups not being
able to take full advantage of low-RTT contacts by rapidly
fanning out. The comparison between NRTT-S and NRTT-A
illustrates this point, where the worst-case latency is an order
of magnitude lower for NRTT-A.

When examining the routing table, we find that NICE-*
nodes have contacts with RTTs in the 100–300 ms range, while
NRTT-* nodes have contacts whose RTTs are lower than 20
ms.

Conversely, we see that the impact of enlarged routing tables
in NR128-variants is the opposite to that in NRTT. The small
performance gain from NRTT-A to NR128-A may be a sign
that the maximum performance has been reached already.
Indeed, NR128-A’s median lookup latency is, in fact, lower
than the median RTT to MDHT nodes.

NR128-A, our best performing node implementation,
achieves a median lookup latency of 164 ms. While median
lookup latency is important, many latency-sensitive applica-
tions are more concerned with the worst-case performance,
and treat lookup latency above a narrow threshold as failure.

Where previous measurements of large-scale Kademlia-
based overlays report long tails with worst-case latencies in
the tens of seconds, our NRTT-A and NR128-A consistently
achieve sub-second lookups, with almost 98% finishing in
less than 500 ms. More importantly, assuming a hard lookup
deadline of 1 second, less than five out of over three thousand
lookups would fail using any of these two implementations.

B. Lookup Cost

Lookup cost, defined in Section III-B, is also an important
characteristic to measure. As Figure 4 shows, implementations
using the aggressive lookup module require more lookup
queries, thus increasing the lookup cost.

Lookup cost in UTorrent and our *-S nodes are very
similar, as we expected. Among them, NRTT-S is slightly
more expensive than the rest, which is caused by a more
intensive query burst, due to the fan-out effect discussed in the
previous section. Conversely, NR128-S has the lowest lookup



100 101 102 103

Queries per lookup

0.0

0.2

0.4

0.6

0.8

1.0
Em

pi
ric

al
 C

D
F

NR128-S
UT
BEP5-S
NICE-S
NRTT-S
NR128-A
BEP5-A
NICE-A
NRTT-A

Fig. 4. Lookup cost. (We recognize that distinguishing between individual
lines in this graph is hard, but the difference between standard (*-S and UT)
and aggressive (*-A) lookup is clear. Also notice the tendency of NR128-*
and NRTT-* to have lower and higher cost than the rest, respectively.)

cost, which comes as no surprise since its enlarged buckets
will reduce the number of hops required.

We predictably see similar relationships between the *-A
nodes, but with higher average lookup costs across the board.

C. Maintenance Cost

Figure 5 depicts the cumulative maintenance queries sent
over time. The obtained results confirm that all our MDHT
node implementations generate less maintenance traffic, by a
considerable margin, than UTorrent.

As mentioned earlier, we believe that UTorrent’s unexpect-
edly good lookup performance is due to modifications to its
routing table management, compared to the specification. This
would go a long way towards explaining why we observe
much more maintenance traffic than for our BEP5-* imple-
mentations.

Figure 6 shows only the first 6 hours of the experiment,
revealing a peculiar stair-like pattern in UT and BEP5-*.
Every 15 minutes, UTorrent triggers a burst of maintenance
messages, approximately 600 messages for a period of 1–2
minutes, and few or no queries between bursts. We see a
similar pattern initially in our own BEP5-* implementations,
but they quickly flatten out. This observation suggests that
while the initial occurrence is an artifact of the specification,
the continued behavior is due to the way UTorrent implements
its internal synchronization mechanism, causing maintenance
message bursts.

All our MDHT node implementations, regardless of the
modifications they include, drastically reduce maintenance
traffic compared to UTorrent. BEP5-S and BEP5-A have irreg-
ular maintenance traffic patterns while the rest were designed
to have very regular traffic patterns.

The enlarged bucket implementations (NR128-*) generate
twice the maintenance traffic of NICE-* and NRTT-* (whose

0 20 40 60 80 100
Time (h)

0

50

100

150

200

250

M
ai

nt
en

an
ce

 q
ue

rie
s 

(c
um

ul
at

iv
e,

 in
 th

ou
sa

nd
s)

UT
BEP5-A
BEP5-S
NR128-*
NRTT-*
NICE-*

Fig. 5. Cumulative maintenance traffic during the entire experiment

0 1 2 3 4 5 6
Time (h)

0

2

4

6

8

10

12

14

16

M
ai

nt
en

an
ce

 q
ue

rie
s 

(c
um

ul
at

iv
e,

 in
 th

ou
sa

nd
s)

UT
BEP5-A
BEP5-S
NR128-*
NRTT-*
NICE-*

Fig. 6. Cumulative maintenance traffic during the first 6 hours

lines overlap), but still generate less traffic than BEP5-* in the
long run.

D. Trade-offs

In comparing our different implementations, we have ex-
plored different trade-offs between performance and cost. We
do, however, also see that some benefits can be gained at zero,
or even negative, cost. For instance, NR128-S is better than
UTorrent in all aspects, with significantly lower maintenance
cost, lower lookup cost and median lookup latencies less than
50% of UTorrent’s. Both NR128-S and UTorrent suffer from
long tails, however, with 10% and 14%, respectively, of the
lookups taking more than 2 seconds.

While achieving better performance at lower cost is cer-
tainly desirable, our target applications have very strict latency
requirements. We are thus forced to go a step further, and



100 101 102

Number of nodes returning values

100

101

102

103

104
Nu

m
be

r o
f p

ee
rs

 re
tu

rn
ed

 (u
ni

qu
e 

IP
s)

Fig. 7. Peers versus nodes returning values

carefully explore what trade-offs we can make to meet these
requirements, even at sometimes significantly higher costs.

Specifically, our low-RTT bias nodes (NRTT-*) achieve
a noticeable performance improvement while keeping the
same maintenance cost and just a small increase in lookup
cost, which we attribute to being able to more rapidly fan
out queries, compared to NICE-*. Finally, enlarging buckets
improves lookup performance while slightly reducing lookup
cost, which might be suitable when lookup cost dominates
over maintenance cost. For example, a system where lookups
are performed very frequently.

VIII. ADDITIONAL RESULTS

Our primary goal was to reduce the time until our node
under test received the first value, but since we have not
changed the way lookups terminate, they will continue until
they reach the node closest to the key. Our toolkit continued
to capture information about this phase of the lookups as well.

The modifications we have made have implications not only
for the first phase, analyzed in the previous section, but for the
complete lookup. In this section, we will present our analysis
and summarize our results as they apply to the whole lookup.

A. Lookup Latency Versus Swarm Size

In principle, in a Kademlia-based DHT, only a fixed number
of nodes need to store the values corresponding to a given key,
regardless of the size of DHT or the popularity of the key. In
practice, we find that popular keys in MDHT tend to have
values distributed among a large number of nodes, while less
popular keys are less widely dispersed.

In Figure 7 we plot the number of nodes returning values
(replicas) against number of unique values stored (swarm size).
We see that as swarm size increases, the number of replicas
found increases as well.

This has no impact on the time it takes to reach the node
closest to the key, but has a significant impact on lookup

10-3 10-2 10-1 100 101

Lookup latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
D

F

NR128-A >200
NR128-A 101-200
NR128-A 51-100
NR128-A 1-50
UT >200
UT 101-200
UT 51-100
UT 1-50

Fig. 8. Lookup latency versus swarm size for UTorrent and NR128-A. Both
implementations perform better on larger swarms.

latency, as defined by us. Not only because there are more
replicas to find, but also because having more replicas increase
the chance that at least one of them is close (low RTT) to the
node under test.

We thus see a relationship between swarm size and lookup
latency. Figure 8 illustrates that lookup latency is lower when
looking up popular infohashes (large swarms). In NR128-A,
for instance, median lookup latency for swarms with more
than 200 peers is 92 ms versus 289 ms for swarms with 50
peers or less (521 ms vs. 848 ms in UTorrent).

We draw two conclusions from these observations. First,
users should expect significantly lower latency when looking
up popular keys (i.e., popular content). And second, our
techniques yield medians well under half second even for small
swarms.

B. Reaching the Closest Node

In this paper, we have focused on a more user-centric metric
of DHT performance, the time to find values. Another metric
that has been widely used and studied in DHTs is the time to
reach the closest node to the target key [3]. For completeness,
and to allow our results to be easily compared to previous
work, we plot our results according to this metric in Figure 9.

Using this metric, our NR128-A implementation still
achieves sub-second results, with a median of 455 ms and
92.8% of its lookups reaching the closest node within a second.

C. Queries & Responses

The Internet is a pretty hostile environment, and many
issues that normally would not arise in a testbed or simulator
will impede performance when the same code is deployed
“in the wild”. As an example, Table II presents information
about lookup traffic obtained in our experiments. The queries
columns show the number of queries generated, and responses
the responses received, both the absolute number and as



10-1 100 101 102

Lookup time to closest node (s)

0.0

0.2

0.4

0.6

0.8

1.0
Em

pi
ric

al
 C

D
F

NR128-A
NRTT-A
NICE-A
BEP5-A
NR128-S
NICE-S
UT
NRTT-S
BEP5-S

Fig. 9. Lookup latency to reach the closest node to the key

a percentage of queries issued, with the remainder being
timeouts.

As can be seen, for BEP5-* and UT, less than 60% of
queries receive responses, the equivalent, one could say, of
more than a 40% packet loss ratio. In previous work [16],
we characterized these connectivity artifacts and proposed
mechanisms to identify and filter out nodes with connectivity
issues. In this paper, some of these mechanisms have been
implemented, improving the quality of our own routing tables.
We believe that these improvements explain why NICE-*,
NRTT-* and NR128-* consistently see a higher response rate
than BEP5-* and UT. We plan to analyze the impact of these
routing policies on the quality of routing tables in future work.

D. Implementation Market Share

Mainline DHT messages have an optional field where the
sender can indicate its version in a four-character string.
The first two characters indicate the client —UTorrent nodes
identify themselves as “UT”— and the other two, the version
number. The client labels reported by nodes are presented in
Table III.

During the course of this experiment, the nodes under test
have exchanged messages with over four million nodes (unique
IP addresses) in the MDHT overlay. We have identified 2.6
out of 4.4 million (60%) as UTorrent nodes, far ahead of the
second most common node implementation, libtorrent. It is
also noteworthy that about one third of the nodes did not
include this optional field in their messages.

IX. RELATED WORK

Li et al. [18] simulated several DHTs under intensive churn
and lookup workloads, in order to understand and compare
the effects of different design properties and parameter values
on performance and cost. The study revealed that, under
intensive churn, Kademlia’s capacity of performing parallel
lookups reduces the effect of timeouts compared to other DHT

TABLE II
LOOKUP QUERIES AND RESPONSES

Label Queries Responses (%)
UT 92,450 52,378 (57)
BEP5-S 67,454 36,361 (54)
NICE-S 68,923 43,937 (64)
NRTT-S 70,234 44,515 (63)
NR128-S 64,488 39,633 (61)
BEP5-A 198,015 116,070 (59)
NICE-A 260,849 166,026 (64)
NRTT-A 281,335 183,175 (65)
NR128-A 221,543 140,025 (63)

TABLE III
IMPLEMENTATION MARKET SHARE

Implementation Nodes (unique IPs) Percentage
UT 2,663,538 60.0
LT 324,122 7.3
TR 7,666 0.2
Other versions 4,813 0.1
No version 1,441,899 32.5
Total 4,442,038 100.0

designs studied. In their simulation results, Kademlia achieved
a median lookup latency of 450 ms with the best parameter
settings.

Kaune et al. [10] proposed a routing table with a bias
towards geographically close nodes, called proximity neigh-
bour selection (PNS). Although their goal was to reduce inter-
ISP traffic in Kademlia, they observed that PNS also reduced
lookup latency in their simulations from 800 to 250 ms.

Other non-Kademlia-based systems have been studied. Rhea
et al. [19] showed that an overlay deployed on 300 PlanetLab
hosts can achieve low lookup latencies (median under 200 ms
and 99th percentile under 400 ms). Dabek et al. [20] achieved
median lookup latencies between 100–300 ms on an overlay
with 180 test-bed hosts.

Crosby and Wallach [7] measured lookup performance
in two Kademlia-based large-scale overlays on the Internet,
reporting a median lookup latency of around one minute in
Mainline DHT and two minutes in Azureus DHT. They argue
that one of the causes of such performance is the existence of
dead nodes (non-responding nodes) in routing tables combined
with very long timeouts. Falkner et al. [8] reduced ADHT’s
median lookup latency from 127 to 13 seconds by increasing
the lookup cost three-fold.

Stutzbach and Rejaie [3] modified eMule’s implementation
of KAD to increase lookup parallelism. Their experiments
revealed that lookup cost increased considerably while lookup
latency improved only slightly. Their best median lookup
latency was around 2 seconds.

Steiner et al. [4] also tried to improve lookup performance
by modifying eMule’s lookup parameters. Although they
discovered that eMule’s design limited their modifications’
impact, they achieved median lookup latencies of 1.5 seconds
on the KAD overlay.



X. CONCLUSION

In this paper, we have shown that it is possible for a node
participating in a multimillion-node Kademlia-based overlay
to consistently perform sub-second lookups. We have also
analyzed the impact of each proposed modification on per-
formance, lookup cost, and maintenance cost, exposing the
trade-offs involved. Additionally, we observed a phenomenon
relevant for applications using the overlay: the more popular
a key is, the faster the lookup.

In our efforts to accomplish the goal of supporting latency-
sensitive applications using Mainline DHT, we have also
produced other noteworthy secondary results, including, but
not limited to: (1) a profiling toolkit that allows us to analyze
MDHT messages exchanged between the node under study
and other MDHT nodes, without code instrumentation; (2) the
deployment and measurement of three modifications to routing
table management (NICE, NRTT, NR128); and (3) an infras-
tructure to rapidly implement and deploy those modifications
in the form of plug-ins.

Our initial study of MDHT node implementations revealed
that UTorrent is the most common implementation currently in
use, with a measured “market share” of 60%, making UTorrent
a good candidate as the state-of-the-art benchmark for us to
beat.

Our most aggressive implementation (NR128-A) not only
beats UTorrent, but also steals its lunch money. Not only
is our median lookup latency almost four times lower than
UTorrent’s, but, most importantly for our purposes, just 0.1%
of NR128-A’s lookups need over a second versus over 27% of
UTorrent’s. While this comes at a higher lookup cost (220%),
when we consider both lookup and maintenance traffic, our
implementation actually generates substantially less traffic
than UTorrent.

Amongst our less aggressive lookup implementations,
NR128-S needs slightly less queries per lookup, half the
maintenance traffic, and still its median lookup latency is less
than half of UTorrent’s, beating it in all three metrics.

We hope that others will find our results useful in de-
signing, evaluating, and improving applications deployed on
top of large-scale DHT overlays on the Internet. All the
source code described in this paper is available on-line at:
http://people.kth.se/∼rauljc/p2p11/.

ACKNOWLEDGMENT

The authors would like to thank Rebecca Hincks, Amir
H. Payberah, and the anonymous reviewers for their valuable
comments on our drafts.

The research leading to these results has received funding
from the Seventh Framework Programme (FP7/2007-2013)
under grant agreement No. 216217 (P2P-Next).

REFERENCES

[1] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer infor-
mation system based on the XOR metric,” in Proceedings of the 1st
International Workshop on Peer-to Peer Systems (IPTPS02), 2002, pp.
53–65.

[2] B. Cohen, “Incentives Build Robustness in BitTorrent,” in Workshop on
Economics of Peer-to-Peer Systems, vol. 6. Berkeley, CA, USA, 2003.

[3] D. Stutzbach and R. Rejaie, “Improving Lookup Performance Over a
Widely-Deployed DHT,” in INFOCOM. IEEE, 2006.

[4] M. Steiner, D. Carra, and E. W. Biersack, “Evaluating and improving
the content access in KAD,” Springer ”Journal of Peer-to-Peer Networks
and Applications”, Vol 2, 2009.

[5] M. Steiner, T. En-Najjary, and E. W. Biersack, “A global view of kad,”
in IMC ’07: Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement. New York, NY, USA: ACM, 2007, pp. 117–
122.

[6] K. Junemann, P. Andelfinger, J. Dinger, and H. Hartenstein, “BitMON:
A Tool for Automated Monitoring of the BitTorrent DHT,” in Peer-to-
Peer Computing (P2P), 2010 IEEE Tenth International Conference on.
IEEE, 2010, pp. 1–2.

[7] S. A. Crosby and D. S. Wallach, “An analysis of bittorrent’s two
kademlia-based dhts,” 2007.

[8] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and T. Anderson,
“Profiling a million user DHT,” in IMC ’07: Proceedings of the 7th
ACM SIGCOMM conference on Internet measurement. New York, NY,
USA: ACM, 2007, pp. 129–134.

[9] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek, “Comparing
the performance of distributed hash tables under churn,” in In Proc.
IPTPS, 2004.

[10] S. Kaune, T. Lauinger, A. Kovacevic, and K. Pussep, “Embracing
the peer next door: Proximity in kademlia,” in Eighth International
Conference on Peer-to-Peer Computing (P2P’08), 2008, p. 343–350.

[11] A. Bakker, R. Petrocco, M. Dale, J. Gerber, V. Grishchenko, D. Rabaioli,
and J. Pouwelse, “Online video using bittorrent and html5 applied
to wikipedia,” in Peer-to-Peer Computing (P2P), 2010 IEEE Tenth
International Conference on, 8 2010, pp. 1 –2.

[12] M. J. Freedman, “Experiences with coralcdn: a five-year operational
view,” in Proceedings of the 7th USENIX conference on Networked
systems design and implementation, ser. NSDI’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 7–7. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1855711.1855718

[13] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. Kubiatowicz, “Tapestry: a resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, pp. 41–53, 2004.

[14] A. Rowstron and P. Druschel, “P.: Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” In: Middle-
ware, pp. 329–350, 2001.

[15] A. Loewenstern, “BitTorrent Enhancement Proposal 5 (BEP5): DHT
Protocol,” 2008.

[16] R. Jimenez, F. Osmani, and B. Knutsson, “Connectivity properties of
Mainline BitTorrent DHT nodes,” in 9th International Conference on
Peer-to-Peer Computing 2009, Seattle, Washington, USA, 9 2009.

[17] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and
I. Stoica, “The impact of DHT routing geometry on resilience and
proximity,” in Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications.
ACM, 2003, pp. 381–394.

[18] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil, “A
performance vs. cost framework for evaluating DHT design tradeoffs
under churn,” in INFOCOM, 2005, pp. 225–236.

[19] S. Rhea, B. Chun, J. Kubiatowicz, and S. Shenker, “Fixing the embar-
rassing slowness of OpenDHT on PlanetLab,” in Proc. of the Second
USENIX Workshop on Real, Large Distributed Systems, 2005, pp. 25–30.

[20] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris,
“Designing a dht for low latency and high throughput,” in IN PRO-
CEEDINGS OF THE 1ST NSDI, 2004, pp. 85–98.


