SIP-router Configuration Framework 1. Overview =============================================================================== The configuration framework can be used by SIP-router core and by modules, to get and set internal variables on-the-fly, and eliminate server restarts whenever it is possible. The core and the modules can declare configuration variables, and can retrieve the value of the variables at any time without performance overhead. The framework makes sure that the variables do not change during the SIP message processing, the child processes see a snapshot of the variables with constant values. The variable, that is changed by a cfg driver module, will be automatically replaced by the framework the next time a SIP message is started to be processed. The drivers can change the values of all the variables by names with or without the need of commit. That means a kind of transaction support, the framework can keep track of the changes (per driver) until they are committed or rolled-back. The framework also supports multiple versions of the core or module configurations. Every SIP message processing or timer function starts with the default version which can be changed runtime in the script. Hence, even if the core/module implements a variable with a single value, it may have multiple instances with different values in memory, and the configuration instances can be swapped runtime. New instances of a configuration group can be added and deleted runtime by the drivers, and all the variables in the group instances take the default value unless their value has been explicitely set. 2. Using the framework in a module =============================================================================== Make sure that the run-time change of the variable cannot cause troubles. You can expect the variable change before a SIP message is processed, or before a timer fires, but it will never change during the function calls. 1. Include the header file: #include "../../cfg/cfg.h" ------------------------------------------------------------------------------- 2. Define a structure that contains the variables, the structure name must begin with "cfg_group_" followed by the group name: (The group name is typically the module name, but a single module can register more than one groups as well.) struct cfg_group_foo { int i; char *ch; str s; void *p; }; ------------------------------------------------------------------------------- 3. Set the default values: static struct cfg_group_foo default_cfg = { -1, "mystring", {"interoperability", 16}, NULL, }; ------------------------------------------------------------------------------- 4. Export the variables over the module interface if you wish: static param_export_t params[] = { {"i", PARAM_INT, &default_cfg.i}, {"ch", PARAM_STRING, &default_cfg.ch}, {"s", PARAM_STR, &default_cfg.s}, {0, 0, 0} }; ------------------------------------------------------------------------------- 5. Declare a void* handle that will be used to access the config group: static void *cfg_handle = &default_cfg; ------------------------------------------------------------------------------- 6. Describe the structure you defined at step 2 for the framework: static cfg_def_t cfg_def[] = { {"i", CFG_VAR_INT, -10, 10, 0, 0, "integer for testing"}, {"ch", CFG_VAR_STRING, 0, 0, 0, 0, "string for testing"}, {"s", CFG_VAR_STR, 0, 0, 0, 0, "str for testing"}, {"p", CFG_VAR_POINTER | CFG_INPUT_STRING, 0, 0, fixup_p, fixup_child_p, "pointer for testing"}, {0, 0, 0, 0, 0, 0, 0}, }; Each row consists of the following items: - name that will be used by the drivers to refer to the variable - flag indicating the variable and the input type, that is accepted by the fixup function, and additional optional settings Valid variable types are: - CFG_VAR_INT = int - CFG_VAR_STRING = char* - CFG_VAR_STR = str - CFG_VAR_POINTER = void* Valid input types are: - CFG_INPUT_INT = int - CFG_INPUT_STRING = char* - CFG_INPUT_STR = str* Optional settings: - CFG_ATOMIC Indicates that atomic change is allowed: the variable can be changed at any time, there is no need to wait for the SIP message processing to finish. It can be used only with CFG_VAR_INT type, and per-child process callback is not allowed - CFG_READONLY The variable is read-only, its value cannot be changed. - CFG_CB_ONLY_ONCE The per-child process callback is called only once after the changes to the global config have been committed. (The first child process that updates its local config calls the callback, and no other child process does so.) The per-child process cb is intended to be used to update the config variables that are stored outside of the cfg framework. By default this callback is called by all the child processes separately, this can be changed with this flag. Multiple values are not supported together with the CFG_CB_ONLY_ONCE flag. - minimum value for integers (optional) - maximum value for integers (optional) - fixup function (optional) that is called when the variable is going to be changed by a driver. The module still uses the old value until the change is committed, and the next SIP message is started to be processed, however the new, not-yet-committed values can be accessed by using the temporary handle within the fixup function. String and str values are cloned to shm memory by the framework. The callback type is: typedef int (*cfg_on_change)(void *temp_handle, str *group_name, str *var_name, void **value); - per-child process callback function (optional) that is called by each child process separately (unless the CFG_CB_ONLY_ONCE flag is set, see above) after the new values have been committed, and the child process is updating its local configuration. The old value will no longer be used by the process. (Useful for fix-ups that cannot be done in shm memory, for example regexp compilation.) typedef void (*cfg_on_set_child)(str *group_name, str *var_name); - description of the variable ------------------------------------------------------------------------------- 7. Declare the configuration group in mod_init: static int mod_init(void) { if (cfg_declare("foo", cfg_def, &default_cfg, cfg_sizeof(foo), &cfg_handle) ) { /* error */ return -1; } ... } ------------------------------------------------------------------------------- 8. The variables can be accessed any time by the group name and handle: cfg_get(foo, cfg_handle, i) cfg_get(foo, cfg_handle, ch) cfg_get(foo, cfg_handle, s) cfg_get(foo, cfg_handle, p) It is also possible to access the variables of other modules or the core in two different ways: 1) For the core: include the header file that declares the cfg_group_* structure and the handle for it. Than use the handle of the core to access the variable: #include "../../cfg_core.h" cfg_get(core, core_cfg, use_dst_blacklist) 2) For the core, module, or script: access the variables by their group and variable name: #include "../../cfg/cfg_select.h" struct cfg_read_handle var_bar_j; in the module init function: static int mod_init(void) { if ((read_cfg_var_fixup("bar", "j", &var_bar_j)) < 0) return -1; /* Note that the variable may or may not exist at this point * depending on the module loading order. The fixup will still * be successful but the variable cannot be read if it has not been * declared yet. If the variable will not be declared at all * SER will fail to start */ } int j; if ((read_cfg_var_int(&var_bar_j, &j)) < 0) { error... } or similarly, str s; if ((read_cfg_var_str(&var_bar_j, &s)) < 0) { error... } 2) is a bit slower than 1) because the first solution returns the pointer directly to the variable, but 2) offers access also to the configuration of other modules and to the variables declared in the script that are not known at compile time. 3. Using the framework in the core =============================================================================== There is basically no difference between the modules and the core, the core can register any number of groups just like a module. A group called "core" has been already registered, have a look at the cfg_core.* files. 4. Drivers =============================================================================== Drivers can change the values of the configuration variables run-time, they can implement RPC calls or database backend for example. The framework is multi-process safe, more drivers (or a single driver with multiple processes) can modify the configuration at the same time. 1. Create a context for the driver #include "../../cfg/cfg_ctx.h" static cfg_ctx_t *ctx = NULL; static void on_declare(str *group_name, cfg_def_t *definition) { ... } static int mod_init(void) { if (cfg_register_ctx(&ctx, on_declare)) { /* error */ return -1; } ... } The callback function, on_declare(), is called every time a new configuration group is registered, so the driver has a chance to know which groups and variables are present, and can immediately modify them. ------------------------------------------------------------------------------- 2. Get the value of a variable by name: cfg_get_by_name() ------------------------------------------------------------------------------- 3. Set the value of a variable without the need of explicit commit: cfg_set_now() wrapper functions: cfg_set_now_int() cfg_set_now_string() ------------------------------------------------------------------------------- 4. Set the value of a variable, but does not commit the change: cfg_set_delayed() wrapper functions: cfg_set_delayed_int() cfg_set_delayed_string() More changes can be done, and committed at once. ------------------------------------------------------------------------------- 5. Commit or roll back the previously prepared changes: cfg_commit() cfg_rollback() ------------------------------------------------------------------------------- 6. Get the description of a variable: cfg_help() ------------------------------------------------------------------------------- 7. Get the list of group definitions: void *h; str gname; cfg_def_t *def; cfg_get_group_init(&h); while(cfg_get_group_next(&h, &gname, &def)) { ... } ------------------------------------------------------------------------------- 8. Get the list of pending changes that have not been committed yet: void *h; str gname, vname; void *old_val, *new_val; unsigned int val_type; unsigned int *group_id; if (cfg_diff_init(ctx, &h)) return -1; while(cfg_diff_next(&h, &gname, &group_id, &vname, &old_val, &new_val, &val_type) ) { ... } cfg_diff_release(ctx); ------------------------------------------------------------------------------- 9. Add/delete an instance of an existing group: cfg_add_group_inst() cfg_del_group_inst() 5. Refreshing the configuration =============================================================================== There is no need to refresh the configuration in the modules, the core takes care of it, unless the module forks a new process that runs in an endless loop. In this case, it is the task of the forked child process to periodically update its own local configuration the following way: #include "../../cfg/cfg_struct.h" int mod_init(void) { /* register the number of children * that will keep updating their local * configuration */ cfg_register_child(1); } void loop_forever(void) { while(1) { /* update the local config */ cfg_update(); ... } } int child_init(int rank) { int pid; pid = fork_process(PROC_NOCHLDINIT, "foo", 1); if (pid == 0) { /* This is the child process */ /* initialize the config framework */ if (cfg_child_init()) return -1; loop_forever(); /* never returns */ } ... } The local configuration must be destroyed only when the child process exits, but SER continues running, so the module keeps forking and destroying child processes runtime. Calling the configuration destroy function must be the very last action of the child process before it exists: int new_process(void) { int pid; pid = fork(); if (pid == 0) { /* This is the child process */ /* initialize the config framework * There is no chance to register the * number of forked processes from mod_init, * hence the late version of ...child_init() * needs to be called. */ if (cfg_late_child_init()) return -1; loop_forever(); /* the function may return */ /* destroy the local config */ cfg_child_destroy(); exit(0); } } Note, that the configuration should be refreshed even if the module does not declare any config variable, because other modules and the core may need the up-to-date config. 6. Configuration values in the script =============================================================================== New configuration values can be declared in the script, the syntax is: . = [descr ] The values can be accessed via select calls: @cfg_get.. Use the following syntax to set an additional instance of a configuration value: [id]. = id is an unsigned integer starting from 0, it does not have to be continuous. Note, that not the variables but the entire configuration group can have multiple instances, and it is possible to swap the configuration of the entire group at once with cfg_select("group_name", id), see the example below: custom.var1 = 1; custom.var2 = "default string"; custom[1].var1 = 15; custom[1].var2 = "More specific string"; custom[2].var1 = 3; # custom[2].var2 is not set, hence, it will inherit the value of custom.var2. # When custom.var2 changes, custom[2].var1 will be also updated. route { # Actual values: var1:1, var2:"default string" cfg_select("custom", 1); # Actual values: var1:15, var2:"More specific string" cfg_select("custom", 2"); # Actual values: var1:3, var2:"default string" cfg_reset("custom") # Actual values: var1:1, var2:"default string" } cfg_reset("group_name") can be used to reset the configuration back to the original values. The values are automatically reseted before each SIP message is started to be processed, or after each timer function execution. The above example with custom variables is supported also with module and core configuration groups. The only restriction is that variables with CFG_CB_ONLY_ONCE flag cannot have multiple values.